

Calculation Policy for

Mathematics

 2022-23
St Mary's Vision

Although a small school, St Mary's has a big impact. Our wish is that children leave the school with rich and happy memories. That they ask big questions, have a sense of their own spirituality and strive for their best and the best for their community.
"The kingdom of heaven is like a mustard seed, which a man took and planted in his field. 32 Though it is the smallest of all seeds, yet when it grows, it is the largest of garden plants and becomes a tree, so that the birds come and perch in its branches."

Matthew 13:31-32

St Mary"s Aims

Children have:

- Strong, happy memories
- Enjoyment and fun
- Strong relationships and friendships with caring and approachable staff
- Thought provoking lessons which enable children to flourish and develop a love of learning
- Ability to ask lots of questions and work as a team
- Local and global community awareness
- Self-esteem and confidence with great communication
- Ability to be flexible, improve learning and problem solve
- Developed a sense of faith and spirituality within a Catholic context
- Ability to be independent and know how to keep themselves safe and healthy physically and mentally
- A wealth of cultural experience
- Manage conflict, risk and disappointment
- An education that recognises the uniqueness of each individual so they can achieve their maximum potential - growing in all areas of learning
- A broad, balanced, challenging and relevant curriculum which caters for the needs of individual children.

Calculation Policy 2022

This policy has been designed in accordance with the National Curriculum 2014 and helps to develop the three main aims; Fluency, Reasoning and problem Solving. It is designed to provide staff, parents and pupils a clear understanding of the expected skill progression with the four main operations. This policy aims to build on recognised best practice nationally as well as catering for the learning needs of all the children at St Mary's Catholic Primary School. The calculation policy is organised according to the expectations set out in the 2014 National Curriculum. The National Curriculum outlines year group expectations however here at St Mary's Primary we believe that children should be treated as individuals and as such should be taught to their developmental stage and should move on when their understanding is secure.

Aims

- To provide a consistent approach to calculation across the school.
- To strengthen continuity and progression in the children's written calculations.
- To form a core set of methods that the children are able to build upon.
- To build on models and images to promote conceptual understanding.
- Develop and reinforce problem-solving strategies
- Practise and understand a range of mathematics vocabulary
- To encourage the children to think independently and to persevere when faced with challenges, showing a confidence of success.
- To encourage the children to embrace the value of learning from mistakes and false starts.
- To nurture the children's ability to reason, generalise and make sense of solutions.
- To enthuse a commitment to and passion for the subject.

Representations

Key to successful implementation of the school calculation policy is consistent use of representations (model and images that support conceptual understanding of the mathematics) and this policy promotes a range of relevant representations, across the primary years.
Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Numicon, Base Ten apparatus), and then pictorial (e.g. Array, place value counters) to then facilitate abstract working (e.g. Columnar addition, long multiplication).

This policy guides teachers through an appropriate progression of representations, and if at any point a pupil is struggling they should revert to familiar pictorial and/or concrete materials/ representations as appropriate. Whilst a mathematically fluent child will be able to choose the most appropriate representation and procedure to carry out a calculation, whether written or mental, pupils should be supported with carefully selected representations that underpin calculation methods (as detailed in this policy), and ensure there is consistency across year groups. The 'Representations to support mental and written calculation' box on each page provides a range of models and images that underpin calculating in that year group. It is not an exhaustive collection, and applies to both mental and written calculation in most circumstances. Staff are encouraged to use additional representations and models to meet the needs of the individual children.

Objective \& Strategy	Concrete	Pictorial	Abstract	
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 4+3=7 \\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to move } \\ \text { into the abstract. } \end{array} \end{aligned}$	
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10. This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?	
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5.'	

Objective \＆ Strategy	Concrete	Pictorial	Abstract	Year								
Adding multiples of ten	Model using dienes and bead strings	E 3 ten $30+50=$ \qquad Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$	2								
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} \square 20 \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$									
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+\text { 日昌 } & =\text { 昌昌吅 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$									
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$									

Objective \& Strategy	Concrete	Pictorial	Abstract	Year	
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} 17+5 & =22 \\ 27+5 & =32 \end{aligned}$		$\begin{aligned} & 17+5=22 \\ & \text { Explore related facts } \\ & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$		
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$		
Add two 2-digit numbers	H $/ / / / \\|_{0}^{\circ}$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$		
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.		

Objective \& Strategy	Concrete	Pictorial	Abstract	Years
Subtracting tens and ones Year 4 subtract with up to 4 digits. introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 2^{6} 54 \\ -\quad 1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange	
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3		
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} 0 \times 8 \not 0,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 1815 \cdot 3419 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$	

 Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw 4 to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

 Strategy	Concrete	Pictorial	Abstract	2
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. Colas Ho C-ELN	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	17

Objective \& Strategy	Concrete	Pictorial	Abstract	
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each colt ies making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$	4
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled aloneside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.		19

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
			$\begin{array}{r} 3 \cdot 19 \\ \times 8 \\ \hline 25 \cdot 52 \end{array}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Long Division

Step 1-a remainder in the ones

> | hto |
| :---: |
| 041 R 1 |
| $4 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

$$
8 \begin{aligned}
& \text { th hto } \\
& 0400 \mathrm{R7} \\
&
\end{aligned}
$$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

Long Division

Step 1 continued...
$h t o$
061
$\begin{array}{r}247 \\ \frac{-4}{3}\end{array}$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

> th hto
> 0402
> $\begin{array}{r}1609 \\ \frac{-8}{1}\end{array}$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Step 2-a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
t o	$t \bigcirc$	t -
2	2	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
	-4	-41
Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18 .

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ =-4 \\ \hline 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -\frac{4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division

Step 2-a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & { }^{n+\circ} \\ & 2 \longdiv { 1 } \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{aligned} & \quad h+0 \\ & 1 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{0} \end{aligned}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} n: 0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} n: 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ \hline-18 \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h 10 \\ & 2 \longdiv { 1 3 9 } \\ & -\frac{2}{278} \\ & -\quad 6 \\ & -18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

Recognise, find and name a half as one of two equal parts of an object, shape or quantity.

Concrete

Pictorial

A whole apple

four equal parts of an object, shape or quantity.

Concrete

Pictorial

Half an apple

Abstract
Half of $10=$
Half of $8=$
of $14=$

\square

Abstrac \dagger
A quarter of $20=\square$
A quarter of $12=\square$

Recognise, find and name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.

Count up and down in tenths: recognise that tenths arise from dividing an object into ten equal parts and in dividing one-digit numbers or quantities by ten.

Concrete

Pictorial

Concrete

Pictorial

Abstract
$\frac{1}{10}$ of $6=0.6$
because
$6 \div 10=0.6$
$\frac{1}{10}$ of $7=0.7$
$7 \div 10=0.7$

Recognise and show, using diagrams, equivalent tractions with small denominators.
Concrete

Abstrac \dagger

Sam says that two quarters is the same as one half.

Is he correct?
How do you know?
tract fractions with the same denominator.

Concrete

Pictorial

Abstract

and order unit fractions the same denominators.

Pictorial

Count up and down in hundredths: recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10 .

Concrete

Recog- $\quad 3$ nise and $\quad 7$ write decimal lents to $\frac{3}{100} 1 / 2,1 / 4 \quad \overline{100}$ and $3 / 4$.

Pictorial

Abstract \dagger

$$
\begin{gathered}
\frac{1}{100} \text { of } 60=0.6 \\
\text { because } 60 \div 100=0.6
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{10} \text { of } 70=0.7 \\
& \text { so }_{\frac{1}{100}}^{\text {of } 70=0.07}
\end{aligned}
$$

Abstrac \dagger

$$
\begin{aligned}
& \frac{1}{2}=0.5 \\
& \frac{1}{4}=0.25 \\
& \frac{3}{4}=0.75
\end{aligned}
$$

Concrete

ReC- $\frac{1}{10}$ of the chocolate bar $=0.1$

Pictorial

sixty hundredths and show ognise sixtenths grams, families of common equivalents.

Abstract

$$
\begin{gathered}
\frac{1}{10}=0.1 \\
\frac{3}{10}=0.3 \\
\frac{5}{10}=\frac{1}{2}=0.5
\end{gathered}
$$

Year 4
$\frac{8}{100}=0.08$ using dia-

Concrete

Add and nator.

Pictorial

Abstract

$$
\begin{aligned}
& \frac{2}{3}=\frac{4}{6} \\
& \frac{3}{5}=\frac{6}{10} \\
& \frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

Abstract

Sam eats $\underline{2}$ of a whole pizza. How much 7 oes he have left?

Lucy and Ben both eat of a cake. How much have they eat $\frac{3}{8}$ altogether?

37
soive prodiems invoiving increasingiy naraer tractions to caicuiate quanmites, ana tractions 10 divide quantities, including non-unit fractions where the answer is a whole number.

Concrete

and

Solve sim- ple measdecimal places.

Pictorial

Concrete

Pictorial

Abstract

$100 \mathrm{~cm}=1 \mathrm{~m}$
$50 \mathrm{~cm}=\frac{1}{2}=0.5 \mathrm{~m}$
$25 \mathrm{~cm}=\frac{1}{4}=0.25 \mathrm{~m}$
$10 \mathrm{~cm}=\frac{1}{10}=0.1 \mathrm{~m}$
$30 \mathrm{~cm}=\frac{3}{10}=0.3 \mathrm{~m}$

Abstract

$£ 18 \div 3=£ 6$
$£ 6 \times 2=£ 12$
ure two

Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.

Concrete same number.

Pictorial

$\frac{6}{10}=\frac{60}{100} \begin{gathered}\text { fractions whose } \\ \text { ples of the }\end{gathered}$

Abstrac \dagger

$$
\frac{3}{5}=\frac{6}{10}=\frac{60}{100}
$$

$$
\frac{3}{4}=\frac{75}{100}
$$

are all multi-

$$
\frac{1}{5}=\frac{2}{10}=\frac{20}{100}
$$

Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements >1 as a mixed number.

Concrete

Abstract

subtract fractions with the same denominators and denominators that are multiples of the same numbers.

Concrete

Abstract \dagger

$$
\frac{2}{5}-\frac{1}{4}
$$

Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. Year 5
Concrete
 6 lots of $\frac{3}{4}$ Recognise and use
to
$4 \frac{2}{4}$ altogether decimal equivalents.

Abstract

Multiply a proper fraction by a whole number:

$$
\frac{3}{4} \times 6=\frac{18}{4}
$$

Change to a mixed number:

Concrete

bol and understand the meaning: write \% as a fraction, decimal and percentage.

Concrete

| Concrete |
| :---: | :---: |
| $\frac{3}{4}$ 0.75
 \square 75% |

Pictorial

Abstrac \dagger

How many thousandths does this number have? How many more thousandths do you need to add to make 67.16?

Abstract

$$
\begin{gathered}
\frac{4}{10}=40 \%=0.4 \\
\frac{32}{100}=32 \%=0.32 \\
\frac{75}{100}=75 \%=0.75
\end{gathered}
$$

$$
\frac{2}{25}=\frac{8}{100}=8 \%=0.08
$$

Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions.

Concrete
Abstract
Pictorial

Which is greater?
$\frac{2}{8}<\frac{6}{16}$
Ordering from smallest to largest by using equivalent fractions:
$\frac{5}{12}, \frac{2}{3}, \frac{5}{6}$
$\frac{5}{12}, \frac{8}{12}, \frac{10}{12}$

Concrete

ing the answer in its simplest form.

Concrete

$$
\frac{1}{2} \text { of } \frac{3}{4}
$$

Pictorial
$\frac{1}{2}$ of $\frac{3}{4}$

$$
\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

II multiply the numerators

Abstrac \dagger

Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.

Year 6

Concrete

Concrete

Pictorial

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$ by whole numbers.

Which would you prefer 75% or $\frac{3}{8}$ of a pie?

75%
proper $\frac{3}{8}$

Abstract

John scored $\frac{40}{80}$ in his spelling test and Hannah scored 40%. Who scored more?

John $={ }_{40}=50 \%$
Hanna $\overline{180}=40 \%$

One paving slab is 0.3 m long and another
is of a metre. Which is longer?
$\frac{1}{4} \quad=0.25 \mathrm{~m}$
0.3 m is $\frac{1 \mathrm{larger}}{4}$ than 0.25 m
0.3 m is $\frac{1}{4}$ larger than 0.25 m Abstract

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Keep it, change it, flip it!

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

Year 6

Associate fractions with division and calculate decimal fraction equivalents.

Concrete

quarters

Pictorial

3 slices of pie 'out of' 8

$\frac{3}{8}$

Abstract
$\frac{3}{8}$
3 'out of' 8 is the same as 3 'divided by' 8

$$
\begin{aligned}
3 \div 8 & =0.375 \\
\text { So } \frac{3}{8} & =0.375
\end{aligned}
$$

